

Cambridge O Level

CHEMISTRY 5070/11

Paper 1 Multiple Choice May/June 2022

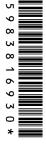
1 hour

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)


INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

This document has 16 pages. Any blank pages are indicated.

IB22 06_5070_11/3RP © UCLES 2022

[Turn over

1 A scientist needs to add approximately 100 cm³ of water to each of 50 large beakers. The scientist needs to fill the beakers as quickly as possible.

Which method should be used?

- **A** A 50 cm³ burette should be used twice for each beaker.
- **B** A 100 cm³ gas syringe should be used once for each beaker.
- **C** A 25 cm³ graduated pipette should be used four times for each beaker.
- **D** A 100 cm³ measuring cylinder should be used once for each beaker.
- **2** Four mixtures, each containing two substances, are shown in the table.

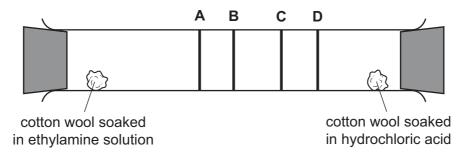
The two substances need to be separated and collected.

Which row is correct?

	mixture	separation method
Α	copper(II) sulfate and water	chromatography
В	methanol and ethanol	evaporation
С	oxygen and nitrogen	fractional distillation
D	sand and barium sulfate	filtration

- **3** Two samples of a colourless solution are tested separately with aqueous sodium hydroxide, NaOH(aq), and aqueous ammonia, NH₃(aq), and the results are recorded.
 - A white precipitate is formed with two drops of NaOH(aq). This precipitate dissolves in an excess of NaOH(aq).
 - A white precipitate is formed with two drops of NH₃(aq). This precipitate dissolves in an excess of NH₃(aq).

What can be deduced from these results?


- **A** The anion present is Cl^- .
- **B** The anion present is not Cl^- .
- **C** The cation present is Al^{3+} .
- **D** The cation present is Zn^{2+} .

4 Which row correctly describes changes in the particles when a substance freezes?

	arrangement of the particles	energy change in the particles
Α	particles become more ordered	particles gain energy
В	particles become more ordered	particles lose energy
С	particles become less ordered	particles gain energy
D	particles become less ordered	particles lose energy

5 Ethylamine gas, C₂H₅NH₂, and hydrogen chloride gas, HC*l*, react together to form a white solid, ethylamine hydrochloride.

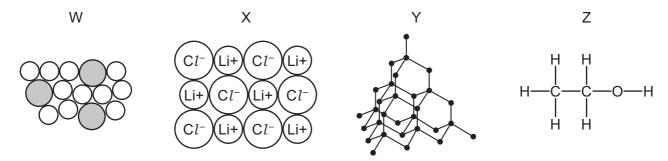
At which position in the tube would a ring of solid white ethylamine hydrochloride form?

6 Two particles have the symbols ${}^{54}_{26}$ Fe ${}^{2+}$ and ${}^{59}_{27}$ Co ${}^{3+}$.

Which statement about these particles is correct?

- **A** They contain the same number of electrons.
- **B** They contain the same number of neutrons.
- **C** They contain the same number of protons.
- **D** They do not contain the same number of protons, neutrons or electrons.
- **7** Two isotopes of chlorine are ^{35}Cl and ^{37}Cl .

Using these isotopes and 12 C and 1 H, how many different relative molecular masses are possible for the compound with molecular formula $C_2H_3Cl_3$?

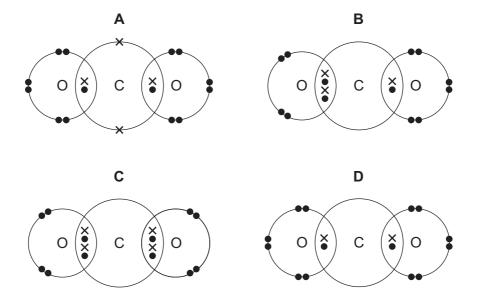

A 2

B 3

C 4

D 5

8 Which statement about the substances, at room temperature and pressure, is correct?


- A W and X conduct electricity.
- **B** W and Y are elements.
- C X and Z dissolve in water.
- **D** Y and Z have low melting points.
- **9** A piece of magnesium reacts with dilute hydrochloric acid.

The resulting solution is then evaporated leaving a solid residue of magnesium chloride.

Which statement is correct?

- **A** A covalent solid is formed in this process.
- **B** Each chlorine atom gains one electron in this process.
- **C** Each magnesium atom loses only one electron in this process.
- **D** Molecules of an element are formed during the reaction.
- **10** Which dot-and-cross diagram represents carbon dioxide?

Only outer shell electrons are shown.

11 Two statements about the structure and properties of metals are given.

statement 1 Metals are malleable and have high melting points.

statement 2 Metals have mobile electrons in their structure.

What is correct?

- A Both statements are correct and statement 2 explains statement 1.
- **B** Both statements are correct but statement 2 does not explain statement 1.
- **C** Statement 1 is correct but statement 2 is incorrect.
- **D** Statement 2 is correct but statement 1 is incorrect.
- 12 How many different elements are present in ammonium nitrate?
 - **A** 2
- **B** 3
- **C** 4
- **D** 5

13 Aqueous calcium hydroxide is an alkali. It is neutralised by dilute nitric acid to produce calcium nitrate and water.

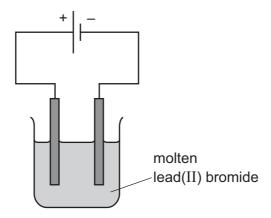
What is the ionic equation for this reaction?

$$\textbf{A} \quad \text{Ca}^{\scriptscriptstyle +} + \text{OH}^{\scriptscriptstyle -} + \text{H}^{\scriptscriptstyle +} + \text{NO}_3^{\scriptscriptstyle -} \rightarrow \text{CaNO}_3 + \text{H}_2\text{O}$$

B Ca(OH)₂ + 2HNO₃
$$\rightarrow$$
 Ca(NO₃)₂ + H₂O

$$\textbf{C} \quad \text{Ca$^{2^+}$(OH$^-$)$}_2 \ + \ 2\text{H}^+\text{NO}_3^- \ \to \ \text{Ca$^{2^+}$(NO}_3^-$)$}_2 \ + \ \text{H}_2\text{O}$$

$$\mathbf{D} \quad \mathsf{OH}^- + \mathsf{H}^+ \rightarrow \mathsf{H}_2\mathsf{O}$$


14 The relative molecular mass, M_r , of liquid Z is 60. Z contains 40.0% carbon, 6.70% hydrogen and 53.3% oxygen.

Which row shows the correct empirical and molecular formulae of Z?

	empirical formula	molecular formula
Α	CH₂O	CH₂O
В	CH₂O	$C_2H_4O_2$
С	$C_2H_4O_2$	$C_2H_4O_2$
D	CH₃O	$C_2H_6O_2$

- 15 How many tonnes of aluminium oxide, Al_2O_3 , are required to produce 27 tonnes of aluminium?
 - **A** 27
- **B** 51
- **C** 54
- **D** 102

16 Lead(II) bromide is electrolysed using inert electrodes.

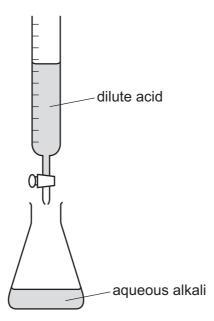
Which statement is correct?

- **A** A brown gas is seen at the positive electrode.
- **B** Electrons pass through the solution from one electrode to the other.
- **C** lons pass through the circuit from one electrode to the other.
- **D** The lead(II) ions are oxidised.
- 17 Compound X is sodium iodide, NaI.

Compound Y is methyl methanoate, HCO₂CH₃.

At room temperature and pressure,1..... solid. In aqueous solution,2..... electricity.

Which words correctly complete gaps 1 and 2?


	1	2
Α	both X and Y are	both X and Y conduct
В	both X and Y are	only X conducts
С	only X is	both X and Y conduct
D	only X is	only X conducts

18 For the forward reaction of a reversible reaction, the enthalpy change of reaction, ΔH , is -50 kJ/mol and the activation energy, E_a , is +60 kJ/mol.

What is the activation energy of the reverse reaction?

- **A** −110 kJ/mol
- B -10 kJ/mol
- C +10 kJ/mol
- **D** +110 kJ/mol

19 The diagram shows a titration experiment.

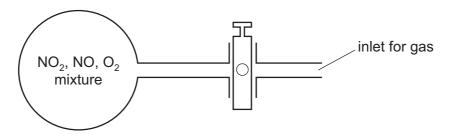
Which row about the reaction in the conical flask is correct?

	the reaction is	the value of ΔH is
Α	endothermic	negative
В	endothermic	positive
С	exothermic	negative
D	exothermic	positive

20 Sulfur dioxide reacts with oxygen in the air.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ/mol}$

The reaction is very slow if no catalyst is present.


Which statement explains this?

- A Air contains only 21% oxygen so there is not enough oxygen for all the sulfur dioxide to react.
- **B** Only a small proportion of the sulfur dioxide and oxygen molecules have enough energy to react, even at high temperatures.
- **C** The reaction is exothermic and so at high temperatures the equilibrium shifts to the left.
- **D** The reaction is reversible and so products turn back to reactants; this happens more quickly at high temperatures.

- 21 Which statement is correct?
 - A An enzyme is a biological catalyst that decreases the activation energy of a reaction.
 - **B** An enzyme is a biological catalyst that increases the activation energy of a reaction.
 - **C** An enzyme is a compound of a transition element that decreases the activation energy of a reaction.
 - **D** An enzyme is a compound of a transition element that increases the activation energy of a reaction.
- 22 Nitrogen dioxide, NO₂, is a dark brown gas that decomposes as shown in the equation.

$$2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$$

dark brown colourless

The diagram shows a glass flask containing a mixture of the three gases. The mixture is pale brown.

More oxygen is forced into the flask.

Which colour change is seen in the mixture?

- A It becomes a darker brown.
- **B** It becomes a paler brown.
- C It turns colourless.
- **D** There is no change.
- **23** Concentrated hydrochloric acid is oxidised by manganese(IV) oxide, MnO₂.

What are two products of this reaction?

- **A** Mn^{2+} and Cl^{-}
- **B** Mn^{2+} and Cl_2
- **C** Mn⁶⁺ and C l^-
- **D** Mn^{6+} and Cl_2

24 The table gives some information about four redox reactions.

Which row gives correct information about what is oxidised and the evidence that this is oxidation?

	equation	what is oxidised in the reaction	evidence for this oxidation
A	$CuO(s) + C(s) \rightleftharpoons CO(g) + Cu(s)$	copper	copper oxide has given oxygen to carbon
В	$Na(s) + \frac{1}{2}Cl_2(g) \rightleftharpoons NaCl(s)$	sodium	sodium has lost an electron
С	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	nitrogen	nitrogen has gained hydrogen
D	$Zn(NO_3)_2(aq) + Mg(s) \rightleftharpoons Mg(NO_3)_2(aq) + Zn(s)$	zinc	zinc has gained two electrons

- 25 Which statement about acids and bases is correct?
 - A All strong acids react with carbonates but all weak acids do not.
 - **B** The oxides of Group I metals are amphoteric.
 - **C** The pH of $1.0\,\text{mol/dm}^3$ ethanoic acid, CH₃COOH, is higher than the pH of $1.0\,\text{mol/dm}^3$ sulfuric acid, H₂SO₄.
 - **D** The pH of $1.0\,\text{mol/dm}^3$ nitric acid, HNO₃, is lower than the pH of $1.0\,\text{mol/dm}^3$ hydrochloric acid, HC*l*.

2 and 3 only

- 26 Some types of chemical reaction are listed.
 - 1 acid-base
 - 2 combustion
 - 3 redox

Which types of reaction occur in a blast furnace during the extraction of iron?

- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only
- 27 Which method should be used to make a pure sample of potassium chloride?
 - **A** adding AgCl(s) to KNO₃(aq)
 - **B** adding excess K₂CO₃(s) to HC*l*(aq)
 - **C** mixing KNO₃(aq) with NaCl(aq)
 - **D** titrating KOH(aq) with HC*l*(aq)

28 A pure sample of lead sulfate is made by reacting aqueous solutions of two salts. The lead sulfate formed is then separated from the mixture.

Which solutions and method of separation are used?

	salt solution 1	salt solution 2	method of separation
Α	lead chloride	sodium sulfate	crystallisation
В	lead chloride	sodium sulfate	filtration
С	lead nitrate	potassium sulfate	crystallisation
D	lead nitrate	potassium sulfate	filtration

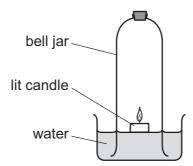
- 29 Which statement is correct?
 - A Food can be preserved by using sulfur dioxide.
 - **B** In the Contact process oxygen reacts with sulfur to make sulfur trioxide.
 - **C** Sulfur dioxide is used to kill bacteria present in wood pulp.
 - **D** Sulfuric acid is used as a bleach.
- **30** Element Y is in Period 3 of the Periodic Table. It forms a chloride that is a liquid at room temperature.

Which row shows correct information about the group number and the nature of the oxide of element Y?

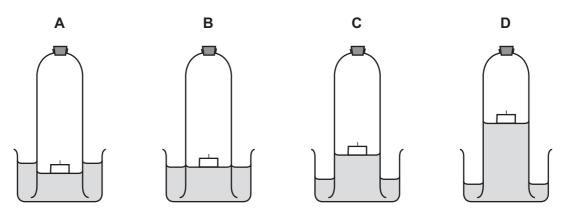
	group number	nature of oxide
Α	1	basic
В	II	acidic
С	IV	amphoteric
D	VI	acidic

- **31** Which gases are used in light bulbs?
 - 1 argon
 - 2 oxygen
 - 3 neon
 - **A** 1 only **B** 1 and 2 only **C** 1 and 3 only **D** 1, 2 and 3

32 The carbonates of metals W, X and Y are heated and the results are shown.


	colour of metal carbonate	gas given off which turns limewater cloudy	colour after heating
W	white	yes	yellow when hot, white when cold
Х	green	yes	black
Υ	white	no	no change

These experimental results can be used to write statements about W, X and Y.


- 1 The carbonates of W and X gave off carbon dioxide on heating.
- 2 Metals X and Y are less reactive than metal W.
- 3 X could be copper.

Which statements are correct?

- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- 33 The diagram shows an experiment to determine the percentage of oxygen in air.

Which diagram shows the correct level of water after the candle stops burning?

34 Two statements are given.

statement 1 The percentage of carbon by mass is greater in methane than in butane.

statement 2 Butane is one of two isomers with the molecular formula C₄H₁₀.

Which statements are correct?

- both statement 1 and statement 2
- statement 1 only В
- C statement 2 only
- neither statement 1 nor statement 2 D

35 One mole of each of the compounds shown is completely combusted.

 $C_5H_{12}O$ C_6H_{12} C_6H_{14}

 $C_6H_{14}O$

How many of the compounds need exactly nine moles of oxygen for complete combustion?

A 1

B 2

С 3 **D** 4

36 The reactants and products of two reactions are shown.

reaction 1 $C_3H_6 + H_2O \rightarrow X$

reaction 2 $X + O_2 \rightarrow CO_2 + H_2O$

Which row correctly describes these two reactions?

	identity of compound X	conditions for reaction 1	reaction 2				
Α	butanol	high pressure and a catalyst	combustion				
В	butanol	heat and a catalyst	decomposition				
С	propanol	heat and a catalyst	decomposition				
D	propanol	heat and a catalyst	combustion				

- 37 Which statement about carboxylic acids is correct?
 - A All carboxylic acids include the group:

- **B** Ethanoic acid reacts with both copper(II) oxide and copper.
- **C** Methanoic acid, formed by bacterial oxidation, is present in vinegar.
- **D** Propanoic acid decolourises acidified potassium manganate(VII).
- 38 The structure of an ester is shown.

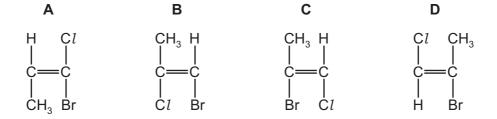
What is the name of this ester?

- A butyl butanoate
- **B** butyl propanoate
- **C** propyl butanoate
- D propyl propanoate
- **39** Poly(ethene) is formed by1..... polymerisation of ethene.

The formation of nylon and *Terylene* are examples of2..... polymerisation.

Proteins contain the same3..... linkage as nylon.

Fats contain the same4..... linkage as *Terylene*.


On hydrolysis, proteins form5......

Which words correctly complete gaps 1–5?

	1	2	3	4	5		
Α	addition	condensation	amide	ester	amino acids		
В	addition	condensation	amide	ester	simple sugars		
С	addition	condensation	ester	amide	amino acids		
D	condensation	addition	ester	amide	simple sugars		

40 The repeat unit of a polymer is shown.

Which monomer would produce this polymer?

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	III/	² He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	牊	radon															
	II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	П	iodine 127	85	¥	astatine _															
				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	molod –	116		livermorium —												
	>			7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209															
	>			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium —												
	Ш			5	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204															
										30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium —												
										29	Cn	copper 64	47	Ag	silver 108	62	An	gold 197	111	Rg	roentgenium -												
Group										28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -												
S.				,						27	ပိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -												
	_	- I	hydrogen 1							56	Fe	iron 56	44	R	ruthenium 101	92	SO	osmium 190	108	Hs	hassium -												
							1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —												
																	loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	Q N	niobium 93	73	<u>n</u>	tantalum 181	105	op O	dubnium —												
					atc	ler 				22	i	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	¥	rutherfordium —												
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids													
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium												
	_			8	:=	lithium 7	#	Na	sodium 23	19	×	potassium 39	37	R _b	rubidium 85	55	S	caesium 133	87	ቷ	francium -												

5070/11/M/J/22

71	7	Intetium	175	103	۲	lawrencium	I
70	χp	ytterbium	173	102	%	nobelium	I
69	Ξ	thulium	169	101	Md	mendelevium	I
89	ш	erbinm	167	100	Fm	ferminm	I
29	운	holmium	165	66	Es	einsteinium	I
99	Ś	dysprosium	163	86	ర్	califomium	I
65	Д	terbium	159	26	ă	berkelium	I
64	9	gadolinium	157	96	Cm	curium	I
63	П	europium	152	98	Am	americium	I
62	Sm	samarium	150	94	Pn	plutonium	ı
61	Pm	promethium	1	93	Δ	neptunium	1
09	2	neodymium	144	92	\supset	uranium	238
29	P	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	T	thorium	232
22	Га	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).